

GeoNetworkX 0.5

GeoNetworkX is a project to handle geospatial graphs. GeoNetworkX extends the NetworkX package to allow spatial
operations on geospatial graphs and benefit from the data structures and algorithm defined in NetworkX. Moreover, it
allows to use GeoPandas library tools on nodes and edges.

Description

The goal of GeoNetworkX is to embed a set of tools to handle geospatial graphs easily.
It combines the capabilities of networkx, geopandas and shapely, providing geospatial operations in networkx
high-level interface.

GeoNetworkX provides data structures that extends the networkx classes with this inheritance scheme:

[image: _images/class_diagram.png]
GeoNetworkX inheritance graph

Contents:

	Getting started
	Installation

	What’s a GeoGraph ?

	Closest edge rule

	Implementation details

	Reading and Writing Files
	Reading Spatial Data

	Writing Spatial Data

	Supplement data
	Computing distances

	Getting elevation data

	Spatial merge tools
	Spatial points merge

	Spatial graph merge

	Isochrones
	Shortest Path Tree

	Edges Voronoi cells

	\(\alpha\)-shape

	Reference
	Main classes

	Tools

	Geometry operations

	Utils

	Read and write

	Simplify

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Installation

GeoNetworkX can be installed with pip with the following command:

pip install geonetworkx

Warning

GeoNetworkX needs packages that have C dependencies that may need to be compiled and installed manually
(shapely, fiona, pyproj and rtree). For Windows users, wheels can be found at Christopher Gohlke’s
website [https://www.lfd.uci.edu/~gohlke/pythonlibs/].

What’s a GeoGraph ?

A geograph is an object extending classical graph definition with topological space. For example, it can be a road
network where edges represent streets and nodes represent their intersection. Other applications can be found in
electrical networks, railway networks, etc.
Mathematically, a geograph is defined with the following elements:

	A topological space \(S\) with a distance measurement application \(d: S \times S \rightarrow \mathbb{R}^+\)

	A graph \(G(N, E)\) with \(N\) a finite set of vertices and \(E \subset N^2\) at set of pairs of vertices.

	\(P := \bigcup_{n \in N} p_n\) with \(p_n \in S\) the coordinates of the node \(n\).

	\(L := \bigcup_{(u, v) \in E} l_{u, v}\) with \(l_{u, v} \subset S\) a topological curve starting at \(p_u\) and ending at \(p_v\).

The space \(S\) is usually here considered to be \(\mathbb{R}^2\) with the euclidian distance, or the WGS84
spheroid with the great-circle distance (or Vincenty distance).

Closest edge rule

The implementation uses the closest edge rule to connect a topological point \(p \in S\) to a geograph. This rule
define a connection point \(i_p\) :

\[i_p := \text{proj}_{L}(p) = \text{argmin}\{d(p, x) | x \in L\}\]

This rule allows to connect any point of the topological space to the geograph. In the street network example, it means
finding the closest street for starting a trip.

Implementation details

The implementation of geographs in GeoNetworkX is based on the following hypothesis:

	All nodes have coordinates stored in a shapely.geometry.Point object.

	Edges may have geometry stored in a shapely.geometry.LineString object.

	A geograph may have a Coordinate Reference System (CRS) using GeoPandas implementation.

An edge may not have a geometry but it is supposed that it can be deduced by a simple “straight” line between the two
nodes.

Reading and Writing Files

Reading Spatial Data

As GeoNetworkX provides an interface to geopandas for the nodes and edges, it
is possible to read data from any vector-based spatial data supported by
geopandas (including ESRI Shapefile and GeoJSON).

Nodes and edges can be added to a given graph with the following methods:

import geonetworkx as gnx
Adding nodes and edges to an existing graph
g = gnx.GeoGraph()
g.add_nodes_from_gdf("copenhagen_streets_net_nodes.geojson")
g.add_edges_from_gdf("copenhagen_streets_net_edges.geojson")
gnx.read_geofiles(nodes_path, edges_path, directed=True, multigraph=True)

Creating a graph from existing files
g = gnx.read_geofiles("copenhagen_streets_net_nodes.geojson",
 "copenhagen_streets_net_edges.geojson",
 edges_path, directed=True, multigraph=True)

Writing Spatial Data

Geographs can be exported to same file formats as geopandas. Two files are
used to write a GeoGraph: one for nodes and one for edges. All the attributes of
the nodes and of the edges will be added in the files. If an attribute type is
not handled by fiona drivers, an attempt is made to cast it (see
gnx.write_geofile for more details).

g.name = "streets_graph"
gnx.write_geofile(g, "test/path/", driver="GeoJSON")

The above code will write two GeoJSON files: test/path/streets_graph_nodes.geojson
and test/path/streets_graph_edges.geojson that can be directly read with
GIS software.

Supplement data

Computing distances

GeoNetworkX provides methods to compute distances within the coordinate
reference system of the graph. Typically, a method is given to add a length
attribute on edges. Different methods are available: euclidian distance but also
geodesic, great-circle or Vincenty distance (wrapped from geopy). All
available distances are stored within the dictionary DISTANCE_MEASUREMENT_METHODS.

>>> import geonetworkx as gnx
>>> g = gnx.GeoGraph(crs=gnx.WGS84_CRS)
>>> g.add_edge(1, 2, geometry=gnx.LineString([(-73.614, 45.504), (-73.632, 45.506)]))
>>> gnx.fill_length_attribute(g) # using geodesic distance
>>> print(g.edges[(1, 2)]["length"])
1424.174413518016
>>> g.to_utm(inplace=True)
>>> gnx.fill_length_attribute(g, only_missing=False)
>>> print(g.edges[(1, 2)]["length"]) # using euclidian distance in UTM
1423.8073619096585

A custom distance measurement method can be used by defining the appropriate
method in the settings. Here is an example implementing the Manhattan distance:

>>> def manhattan(p1, p2):
... return abs(p1.x - p2.x) + abs(p1.y - p2.y)
>>> gnx.settings.DISTANCE_MEASUREMENT_METHODS["manhattan"] = manhattan
>>> gnx.fill_length_attribute(g, only_missing=False, method="manhattan") # using manhattan distance
>>> print(g.edges[(1, 2)]["length"])
1608.0440213837428

Getting elevation data

The elevation of nodes points can be filled as an attribute through the
SRTM [https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission] package.

>>> import geonetworkx as gnx
>>> g = gnx.GeoGraph(crs=gnx.WGS84_CRS)
>>> g.add_node(1, gnx.Point(5.145, 45.213))
>>> gnx.fill_elevation_attribute(g)
>>> print(g.nodes[1]["elevation[m]"])
473

Spatial merge tools

GeoNetworkX implements methods for map-matching points to the geograph. That is to say finding, for a query point, the
closest edge or node in a geograph. Mathematically, it means solving the following optimization problem for a query
point \(p \in S\):

\[\min_{x \in L} d(p, x)\]

A frequently encountered problem is finding the closest edge in a geograph for a set of points \(P\). If done
naively, a nested loop on points and edges is performed to compute all distances. This introduces a high computational
cost (\(o(|P|\times|E|)\)) that can be avoided by using the right data structure. GeoNetworkX uses kd-trees to
efficiently solve this problem. Theses allow to find the optimal solution without having to compute all distances
(\(o((|P| + |E|) \log|E|)\)).

To compute the closest edge, all edge geometries are discretized within a tolerance distance \(\epsilon > 0\). This
method is not exact if the coordinate of the geograph are not unprojected (using latitude and longitude angles), but
produces fairly good results. The implemented method uses kd-trees implemented in the
Scipy Spatial [https://docs.scipy.org/doc/scipy/reference/spatial.html] package (see
cKDTree [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html#scipy.spatial.cKDTree]).

Spatial points merge

GeoNetworkX implements a method to add a set of point to a geograph as nodes using the closest edge rule
(gnx.spatial_points_merge). This method not only find the closest edge but generate the new edges to connect the
new nodes to the geograph:

[image: _images/building_projection_graph2.png]
Illustration of work done in the spatial_points_merge method. Initial geograph edges are in black, nodes in blue
, new nodes are in green, new intersection nodes in red.

Here is an example that merge a set of bicycle station to a street network.

import geopandas as gpd
import geonetworkx as gnx
import osmnx as ox

Download and set up the street network (main streets_graph only)
streets_graph = ox.graph_from_address("Rennes, France", distance=2500,
 infrastructure='way["highway"~"primary|secondary|tertiary"]')
streets_graph = gnx.read_geograph_with_coordinates_attributes(streets_graph)

Getting the bicycle stations
bicycle_stations = gpd.read_file("geonetworkx/tests/datasets/"
 "rennes_bicycle_stations_velo_star.geojson")

Merging the stations to the street network
gnx.spatial_points_merge(streets_graph, bicycle_stations, inplace=True)

Spatial graph merge

An additional useful feature that provides GeoNetworkX is geographs merge. That is to say, from a base graph, adding
another graph on top of it and setting the right edges connect both.
This feature may be very useful for multimodal transport routing. For example, a use case is to merge a street graph
with a subway system graph to find an optimal route combining walk and subway transportation. To do so, the closest
street of each subway station has to be found and an edge has to be added to link them. This is what is done in the
gnx.spatial_graph_merge method.

Practically, this can be useful for merging two independent networks by specifying connecting nodes from one graph and
reachable edges from the other graph. For instance, it can be used to build a multi-modal network combining streets
network and subway network by connecting subway stations (represented as nodes) to their closest street (represented as
edges).

streets: GeoMultiDiGraph
subway: GeoMultiDiGraph
subway_node_is_station = lambda n: subway.nodes[n].get("name", None) is None
streets_and_subway = gnx.spatial_graph_merge(streets,
 subway,
 node_filter=subway_node_is_station)

Here is a visualization of the result:

[image: _images/graph_merge_example2.png]
Illustration of work done in the spatial_graph_merge method. Street network is in blue, subway network in red,
and merging elements in green.

Isochrones

Isochrones defines the reach of a location within a distance limit. An isochrone polygon is defined by all reachable
points from a source node trough a given geograph.

Using an additional distance function \(d_G: N \times N \rightarrow \mathbb{R}^+\) corresponding to a shortest path
distance between two nodes in the graph, the isochrone polygon with source node \(n\) and a distance
\(\epsilon\) can be defined as:

\[I_n^\epsilon := \{x \in S: d_G(n, i_x) + d(i_x, x) \leq \epsilon\}\]

with \(i_x := \text{proj}_L(x)\)

The core method is based on Shortest Path Tree generation (SPT) (or ego-graph as in NetworkX). This tree contains all
nodes reachable within the \(\epsilon\) distance from the source node. To get an isochrone polygon approximation,
this tree has to be “buffered” to represent the boundaries of the SPT.
Such polygons can be approximate by various methods (see Isochrones OSM wiki [https://wiki.openstreetmap.org/wiki/Isochrone]).
Two methods have been implemented in GeoNetworkX:

	\(\alpha\)-shapes for fast approximation

	Natural neighborhood with edges Voronoi cells computation for a precise approximation

The \(\alpha\)-shape method produces most of the time good results at city scale. In contrast, edges Voronoi cells
produce a more faithful representation of isochrone polygons that can be interpreted at street scale.
Here is an example foreach method:

[image: _images/Isochrone_example.png]
Isochrone polygon example using natural neighborhood (Grenoble, France)

[image: _images/Isochrone_example_alpha_shape.png]
Isochrone polygon example using alpha-shape (Grenoble, France)

Details about each method are provided below.

Shortest Path Tree

To compute an isochrone, GeoNetworkX uses shortest path tree computation that is implemented in NetworkX ego_graph
method. An extended version is proposed to compute precisely the boundaries of a graph by using spatial information.
The proposed algorithm adds boundary nodes on edges leaving the ego-graph to represent the exact point where the cutoff
value is reach in the SPT. The coordinates of the boundary nodes are computed using a linear interpolation with edge
geometry length (see geonetworkx.generators.extended_ego_graph for more details). Here is an illustration of an
extended shortest path tree for a street network:

[image: _images/SPT_extension.png]
Ego-graph (or SPT) example from a source node and 600 meters limit. Edges colors represent total length to the
source.

Edges Voronoi cells

For a given graph, this method computes voronoi cells of each edge. That is to say for each edge, all points closer to
this edge than any other edge. Formally, the voronoi cell \(V_e\) of the edge \(e\) is:

\[V_e := \{ x \in S : d(x, \text{proj}_{l_e}(x)) \leq d(x, \text{proj}_{l_u}(x)), \forall u \in E \backslash \{e\} \}\]

From a shortest path tree \(T \subset G\), we define its influence polygon \(V_T\) by all points closer to any
edge of \(T\) than any edge of \(G\) that is not in \(T\). That is to say:

\[V_T := \bigcup_{e \in E_T} V_e\]

Edges Voronoi cells are computed in GeoNetworkX thanks to the PyVoronoi [https://github.com/Voxel8/pyvoronoi] package
that provides an interface to the
boost Voronoi library [https://www.boost.org/doc/libs/1_70_0/libs/polygon/doc/voronoi_main.htm]. This code allows
to compute cells for points and disjoint segments. A work has been done in GeoNetworkX to generalize this work to
generic linestrings. For instance, here is an example of the edges voronoi cells of a street graph:

[image: _images/voronoi_edges_cells.png]
Edges Voronoi cells of a street graph.

\(\alpha\)-shape

\(\alpha\)-shapes are a generalization of the concept of convex hull. For a finite set of points, it defines
a piecewise linear curve that forms a polygon that contains all points. It can be computed with the Delaunay
triangulation of the point set \(P\) and with the circumradius of the triangles:

\[A_\alpha := \bigcup_{t \in \text{Delaunay}(P) : r(t) \leq 1/\alpha} t\]

With \(r(t)\) the circumradius of the triangle \(t\).

Using this definition, \(A_0\) represents the convex hull of \(P\) and \(A_\inf\) is the empty set (it
can be seen has the minimum spanning tree of the points).

Theses shapes can be used to approximate an isochrone polygon to “buffer” the SPT geometry. To do this, GeoNetworkx
compute an \(\alpha\)-shape on a discretized edges of the SPT.

Here is an example of the Delaunay triangulation used to compute an \(\alpha\)-shape.

[image: _images/DelaunayTriangulation.png]
Delaunay triangulation of a discretization of SPT edges.

The parameter \(\alpha\) is computed by taking a percentile of the circumradius of all triangles. For the same
example as above, here is the distribution of circumradius of triangles.

[image: _images/circumradius_distplot.png]
Scatter plot of the circumradius of all triangles.

A “good” choice for \(1/\alpha\) is the 99-percentile of the circumradius to exclude only outliers.

Reference

	Release

	0.5.0

	Date

	May 25, 2020

	Main classes
	GeoGraph

	GeoMultiGraph

	GeoDiGraph

	GeoMultiDiGraph

	Tools
	Spatial Merge

	Isochrones

	Geometry operations

	Utils
	Geograph utils

	Voronoi utils

	Generators utils

	Read and write

	Simplify

Main classes

GeoGraph

	
class GeoGraph(incoming_graph_data=None, **attr)

	Bases: networkx.classes.graph.Graph

This class extends the networkx.Graph to represent a graph that have a geographical meaning. Nodes are
located with their coordinates (x, y) (using shapely.geometry.Point objects) and edges can be represented with a
given broken line (using shapely.geometry.LineString objects). Each graph has its own keys for naming nodes and
edges geometry (nodes_geometry_key, edges_geometry_key). A coordinate reference system (CRS) can be defined
for a graph and will be used for some methods managing earth coordinates (especially for distances).
All nodes must have defined coordinates, otherwise a default coordinates are used.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the all nodes don’t have valid coordinates.

See also

networkx.Graph, GeoDiGraph, GeoMultiGraph, GeoMultiDiGraph

Initialize a graph with edges, name, or graph attributes.

	Parameters

	
	incoming_graph_data (input graph (optional, default: None)) – Data to initialize graph. If None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

	
_get_nodes_geometries_from_edge_geometry(u, v, geometry)

	For each node of the edge, return the node geometry deduced from the linestring if it not already present.

	
_get_nodes_geometries_to_set_for_edges_adding(ebunch_to_add, attr)

	Return a dictionary of nodes geometries to set when adding a set of edges.

	
add_edge(u_of_edge, v_of_edge, **attr)

	Add an edge between u and v.

If one of the node is not already in the graph and a geometry is provided, the node geometry is deduced from
the first or last point of the linestring.

Examples

>>> import geonetworkx as gnx
>>> g = gnx.GeoGraph()
>>> g.add_edge(1, 2, geometry=gnx.LineString([(0, 0), (1, 1)]))
>>> print(g.nodes[2]["geometry"])
POINT (1 1)

	
add_edges_from(ebunch_to_add, **attr)

	Add all the edges in ebunch_to_add and add nodes geometry if they are not present.

If one of the node is not already in the graph and a geometry is provided, the node geometry is deduced from
the first or last point of the linestring.

Examples

>>> import geonetworkx as gnx
>>> g = gnx.GeoGraph()
>>> g.add_edges_from([(0, 1, dict(geometry=gnx.LineString([(0, 0), (1, 1)]))),
... (1, 2, dict(geometry=gnx.LineString([(1, 1), (2, 2)])))])
>>> print(g.nodes[2]["geometry"])
POINT (2 2)

>>> g = gnx.GeoMultiGraph()
>>> g.add_edges_from([(0, 1, 7, dict(geometry=gnx.LineString([(-1, 0), (1, 1)]))),
... (1, 2, 8, dict(geometry=gnx.LineString([(1, 1), (2, 2)])))])
[7, 8]
>>> print(g.nodes[1]["geometry"])
POINT (1 1)

See also

add_edge, nx.Graph.add_edges_from

	
add_edges_from_gdf(gdf, edge_first_node_attr=None, edge_second_node_attr=None)

	Add edges with the given GeoDataFrame. If no dataframe columns are specified for first and second node,
the dataframe index must be a multi-index (u, v).

	Parameters

	
	gdf – GeoDataFrame representing edges to add (one row for one edge).

	edge_first_node_attr – Edge first node attribute. If None, the dataframe index is used, else the given
column is used. Must be used with edge_second_node_attr. (Default value = None)

	edge_second_node_attr – Edge second node attribute. If None, the dataframe index is used, else the
given column is used. Must be used with edge_first_node_attr. (Default value = None)

See also

add_nodes_from_gdf

	
add_node(node_for_adding, geometry=None, **attr)

	Add a single node node_for_adding with its given geometry.

See also

nx.Graph.add_node

Examples

>>> import geonetworkx as gnx
>>> g = gnx.GeoGraph()
>>> g.add_node(1, gnx.Point(2, 3))
>>> print(g.nodes[1]["geometry"])
POINT (2 3)

	
add_nodes_from(nodes_for_adding, **attr)

	Add multiple nodes with potentially given geometries.

If no geometry is provided, behaviour is same as the
nx.Graph.add_nodes_from method.

See also

nx.Graph.add_nodes_from

Examples

>>> import geonetworkx as gnx
>>> g = gnx.GeoGraph()
>>> g.add_nodes_from([(1, gnx.Point(1, 1)),
... (2, gnx.Point(2, 1)),
... (3, gnx.Point(3, 1))])
>>> print(g.nodes[2]["geometry"])
POINT (2 1)

	
add_nodes_from_gdf(gdf, node_index_attr=None)

	Add nodes with the given GeoDataFrame and fill nodes attributes with the geodataframe columns.

	Parameters

	
	gdf – GeoDataFrame representing nodes to add (one row for one node).

	node_index_attr – Node index attribute for labeling nodes. If None, the dataframe index is used, else
the given column is used. (Default value = None)

See also

add_edges_from_gdf

	
check_nodes_validity()

	Check that all nodes have geometries.

	
copy(as_view=False)

	Return a copy of the graph (see networkx.Graph.copy).

	
property crs

	Coordinate Reference System of the graph. This graph attribute appears in the attribute dict G.graph keyed
by the string "crs" as well as an attribute G.crs

	
property edges_geometry_key

	Attribute name for the edges geometry attributes. This graph attribute appears in the attribute dict
G.graph keyed by the string "edges_geometry_key" as well as an attribute G.edges_geometry_key

	
edges_to_gdf()

	Create a gpd.GeoDataFrame from edges of the current graph. The column representing the geometry is
named after the current edges_geometry_key attribute.

	Returns

	gdf_edges – The resulting GeoDataFrame : one row is an edge

	Return type

	geopandas.GeoDataFrame [https://geopandas.org/reference/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame]

See also

get_edges_as_line_series, nodes_to_gdf

	Return type

	GeoDataFrame

	
get_default_node_dict()

	Return the default node attribute dictionary.

	
get_edges_as_line_series()

	Return the edges as a geopandas.GeoSeries of shapely.geometry.LineString.

	Returns

	Series containing all edges geometries. Its CRS is the graph CRS.

	Return type

	gpd.GeoSeries

See also

edges_to_gdf, get_nodes_as_point_series

	Return type

	GeoSeries

	
get_node_as_point(node_name)

	Return a node as a shapely.geometry.Point object.

	Parameters

	node_name – Name of the node on which the geometry is browsed.

	Returns

	The point representing the located node.

	Return type

	shapely.geometry.Point

See also

get_node_coordinates, get_node_coordinates, get_nodes_as_points

	
get_node_coordinates(node_name)

	Return the coordinates of the given node.

	Parameters

	node_name – Name of the node on which the coordinates are browsed.

	Returns

	A two-element list containing (x,y) coordinates of the given node.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

See also

get_nodes_coordinates, get_node_as_point, get_nodes_as_points

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_nodes_as_multipoint()

	Return nodes geometries as a shapely.geometry.MultiPoint.

	Returns

	MutltiPoint containing all nodes geometries.

	Return type

	MultiPoint

	Return type

	MultiPoint

	
get_nodes_as_point_series()

	Return the nodes as a geopandas.GeoSeries of shapely.geometry.Point.

	Returns

	Series containing all nodes geometries. Its CRS is the graph CRS.

	Return type

	gpd.GeoSeries

See also

nodes_to_gdf, get_edges_as_line_series

	Return type

	GeoSeries

	
get_nodes_as_points()

	Return all nodes as shapely.geometry.Point objects within a dictionary.

	Returns

	Dictionary containing the geometry of each node of the graph.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

See also

get_node_coordinates, get_node_coordinates, get_node_as_point

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_nodes_coordinates()

	Return all nodes coordinates within a dictionary.

	Returns

	Dictionary containing the coordinates of the each node of the graph.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

See also

get_node_coordinates, get_node_as_point, get_nodes_as_points

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_spatial_keys()

	Return the current graph spatial keys.

	Returns

	Dictionary containing spatial keys (nodes and edges geometry keys and crs).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
node_attr_dict_check(attr)

	Check that the given attribute dictionary contains mandatory fields for a node.

	
property nodes_geometry_key

	Attribute name for the edges geometry attributes. This graph attribute appears in the attribute dict
G.graph keyed by the string "edges_geometry_key" as well as an attribute G.nodes_geometry_key

	
nodes_to_gdf()

	Create a geopandas.GeoDataFrame from nodes of the current graph. The column representing the geometry is
named after the current nodes_geometry_key attribute.

	Returns

	The resulting GeoDataFrame : one row is a node

	Return type

	gpd.GeoDataFrame

See also

get_nodes_as_point_series, edges_to_gdf

	Return type

	GeoDataFrame

	
set_nodes_coordinates(coordinates)

	Set nodes coordinates with a given dictionary of coordinates (can be used for a subset of all nodes).

	Parameters

	coordinates (dict :) – Dictionary mapping node names and two-element list of coordinates.

	
to_crs(crs=None, epsg=None, inplace=False)

	Transform nodes and edges geometries to a new coordinate reference system.

	Parameters

	
	crs (dict [https://docs.python.org/3/library/stdtypes.html#dict] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Output projection parameters as string or in dictionary form (Default value = None).

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – EPSG code specifying output projection.

	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the modification is done inplace, otherwise a new graph is created (Default value = False).

	Returns

	Nothing is returned if the transformation is inplace, a new GeoGraph is returned otherwise.

	Return type

	None [https://docs.python.org/3/library/constants.html#None] or GeoGraph

See also

geopandas.GeoSeries.to_crs [https://geopandas.org/reference.html#geopandas.GeoSeries.to_crs]

	
to_directed(as_view=False)

	Return a directed representation of the graph (see networkx.Graph.to_directed).

	
to_directed_class()

	Returns the class to use for empty directed copies (see networkx.Graph.to_directed_class).

	
to_nx_class()

	Return the closest networkx class (in the inheritance graph).

	
to_undirected(as_view=False)

	Return an undirected copy of the graph (see networkx.Graph.to_undirected).

	
to_undirected_class()

	Returns the class to use for empty undirected copies (see networkx.Graph.to_undirected_class).

	
to_utm(inplace=False)

	Project graph coordinates to the corresponding UTM (Universal Transverse Mercator)

	Parameters

	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the modification is done inplace, otherwise a new graph is returned (Default value = False).

Example

>>> import geonetworkx as gnx
>>> from shapely.geometry import Point
>>> g = gnx.GeoGraph(crs=gnx.WGS84_CRS)
>>> g.add_edge(1, 2, geometry=gnx.LineString([(4.28, 45.5), (4.32, 45.48)]))
>>> g.to_utm(inplace=True)
>>> print(g.crs)
+proj=utm +zone=31 +ellps=WGS84 +datum=WGS84 +units=m +no_defs +type=crs
>>> print(g.nodes[1]["geometry"])
POINT (600002.1723317318 5039293.296216004)

See also

to_crs

GeoMultiGraph

	
class GeoMultiGraph(incoming_graph_data=None, **attr)

	Bases: geonetworkx.geograph.GeoGraph, networkx.classes.multigraph.MultiGraph

A undirected geographic graph class that can store multiedges.

Initialize a graph with edges, name, or graph attributes.

	Parameters

	
	incoming_graph_data (input graph (optional, default: None)) – Data to initialize graph. If None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

	
add_edge(u_for_edge, v_for_edge, key=None, **attr)

	Add a single edge.

This method exists only for reflecting nx.MultiGraph method so that the multiple inheritance scheme works.

Examples

>>> import geonetworkx as gnx
>>> g = gnx.GeoMultiGraph()
>>> g.add_edge(1, 2, 0, geometry=gnx.LineString([(5, 4), (2, 7)]))
0
>>> print(g.nodes[1]["geometry"])
POINT (5 4)

	
to_directed(as_view=False)

	Return a directed representation of the graph (see networkx.MultiGraph.to_directed).

	
to_directed_class()

	Returns the class to use for empty directed copies (see networkx.MultiGraph.to_directed_class).

	
to_nx_class()

	Return the closest networkx class (in the inheritance graph).

	
to_undirected(as_view=False)

	Return an undirected copy of the graph (see networkx.MultiGraph.to_undirected).

	
to_undirected_class()

	Returns the class to use for empty undirected copies (see networkx.MultiGraph.to_undirected_class)..

GeoDiGraph

	
class GeoDiGraph(incoming_graph_data=None, **attr)

	Bases: geonetworkx.geograph.GeoGraph, networkx.classes.digraph.DiGraph

Base class for directed geographic graphs.

Because edges are directed, it supposes that the edges lines are well-ordered. Namely, that the first point of the
line matches with the coordinates of the first vertex of the edge (or is at least close) and vice versa with the
last point of the line and the second. If this is not the case, the method order_well_lines can be useful to
make sure of that.

Initialize a graph with edges, name, or graph attributes.

	Parameters

	
	incoming_graph_data (input graph (optional, default: None)) – Data to initialize graph. If None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

	
to_directed(as_view=False)

	Return a directed representation of the graph (see networkx.DiGraph.to_directed).

	
to_directed_class()

	Returns the class to use for empty directed copies (see networkx.DiGraph.to_directed_class).

	
to_nx_class()

	

	
to_undirected(reciprocal=False, as_view=False)

	Return an undirected copy of the graph (see networkx.DiGraph.to_undirected).

	
to_undirected_class()

	Returns the class to use for empty undirected copies (see networkx.DiGraph.to_undirected_class).

GeoMultiDiGraph

	
class GeoMultiDiGraph(incoming_graph_data=None, **attr)

	Bases: geonetworkx.geomultigraph.GeoMultiGraph, geonetworkx.geodigraph.GeoDiGraph, networkx.classes.multidigraph.MultiDiGraph

A directed geographic graph class that can store multiedges.

Initialize a graph with edges, name, or graph attributes.

	Parameters

	
	incoming_graph_data (input graph (optional, default: None)) – Data to initialize graph. If None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

	
to_directed(as_view=False)

	Return a directed representation of the graph (see networkx.MultiDiGraph.to_directed).

	
to_directed_class()

	Returns the class to use for empty directed copies (see networkx.MultiDiGraph.to_directed_class).

	
to_nx_class()

	Return the closest networkx class (in the inheritance graph).

	
to_undirected(reciprocal=False, as_view=False)

	Return an undirected copy of the graph (see networkx.MultiDiGraph.to_undirected).

	
to_undirected_class()

	Returns the class to use for empty undirected copies (see networkx.MultiDiGraph.to_undirected_class).

Tools

Spatial Merge

	
spatial_graph_merge(base_graph, other_graph, inplace=False, merge_direction='both', node_filter=None, intersection_nodes_attr=None, discretization_tol=None)

	Operates spatial merge between two graphs. Spatial edge projection is used on merging nodes (see
spatial_points_merge). The base_graph attributes have higher priority than the other_graph attributes (
i.e. if graphs have common graph attributes, nodes or edges, the base_graph attributes will be kept).

	Parameters

	
	base_graph (GeoGraph, GeoDiGraph, GeoMultiGraph or GeoMultiDiGraph) – Base graph on which the merge operation is done.

	other_graph (GeoGraph, GeoDiGraph, GeoMultiGraph or GeoMultiDiGraph) – Input graph to merge. Modified graph if operation is done inplace.

	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, do operation inplace and return None. (Default value = False)

	merge_direction (str [https://docs.python.org/3/library/stdtypes.html#str]) – See spatial_points_merge (Default value = “both”)

	node_filter – Lambda returning if a given node (from the other_graph graph) has to be merged. (Default value = None)

	intersection_nodes_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – A dictionary of attributes (constant for all added intersection nodes). (Default value = None)

	discretization_tol (float [https://docs.python.org/3/library/functions.html#float]) – A custom discretization tolerance for lines. If None, tolerance with the right order of magnitude is
pre-defined for some CRS. For more details, see gnx.get_default_discretization_tolerance method.
(Default value = None)

	Returns

	A new graph with the same type as base_graph if not inplace.

	Return type

	None [https://docs.python.org/3/library/constants.html#None] or GeoGraph

See also

spatial_points_merge

	
spatial_points_merge(graph, points_gdf, inplace=False, merge_direction='both', node_filter=<function no_filter>, edge_filter=<function no_filter>, intersection_nodes_attr=None, discretization_tol=None)

	Merge given points as node with a spatial merge. Points are projected on the closest edge of the
graph and an intersection node is added if necessary. If two nodes a given point and a node have the same name, with
equal coordinates, then the node is considered as already in the graph. A discretization tolerance is used for
indexing edges lines. New nodes created from the geodataframe have attributes described by other columns (except if
an attribute value is nan). When a point is projected on an edge, this edge is removed and replaced by two others
that connect the extremities to the intersection node. A reference to the original edge is kept on theses new edges
with the attribute settings.ORIGINAL_EDGE_KEY. The original edge is the oldest parent of the new edge, to have
the direct parent, the attribute has to be cleant first.

	Parameters

	
	graph (GeoGraph, GeoDiGraph, GeoMultiGraph or GeoMultiDiGraph) – A GeoGraph or derived class describing a spatial graph.

	points_gdf (gpd.GeoDataFrame) – A list of point describing new nodes to add.

	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, do operation inplace and return None. (Default value = False)

	merge_direction (str [https://docs.python.org/3/library/stdtypes.html#str]) – For directed graphs only:

	'both': 2 edges are added: graph -> new node and new node -> graph

	'in': 1 edge is added: new_node -> graph

	'out': 1 edge is added: graph -> new_node (Default value = “both”)

	node_filter – A node filter (lambda) to exclude nodes (and by the way all concerned edges) from the projection
operation. (Default value = no_filter)

	edge_filter – An edge filter (lambda) to exclude edges on which the projection will not take place. (Default value = no_filter)

	intersection_nodes_attr (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of attributes (constant for all added intersection nodes). (Default value = None)

	discretization_tol (float [https://docs.python.org/3/library/functions.html#float]) – A custom discretization tolerance for lines. If None, tolerance with the right order of magnitude is
pre-defined for some CRS. For more details, see gnx.get_default_discretization_tolerance method.
(Default value = None)

	Returns

	If not inplace, the created graph.

	Return type

	None [https://docs.python.org/3/library/constants.html#None] or GeoGraph

See also

spatial_graph_merge

	Return type

	GeoGraph

Isochrones

	
boundary_edge_buffer(line)

	Return the edge buffer polygon on the oriented line. This represented the area where all points are reachable
starting from the line first extremity and using the closest edge projection rule.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]

	
get_alpha_shape_polygon(points, quantile)

	Return the alpha-shape polygon formed by the given points. Alpha parameter is determined using a quantile of
circumradius of Delaunay triangles.

	Parameters

	
	points (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input points (2D)

	quantile (float [https://docs.python.org/3/library/functions.html#float]) – Quantile on circumradius to determine alpha (100 returns the convex hull,
0 returns an empty polygon). 0 <= quantile <= 100.

	Returns

	The polygon formed by all triangles having a circumradius inferior or equal to \(1/\alpha\).

Note that this does not return the exhaustive alpha-shape for low quantiles, the minimum spanning tree LineString
should be added to the returned polygon.
This is adapted from Sean Gillies code [https://sgillies.net/2012/10/13/the-fading-shape-of-alpha.html].

	Return type

	Polygon or MultiPolygon

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]

	
get_edges_voronoi_cells(graph, tolerance=1e-07)

	Return edge voronoi cells as GeoSeries.

	Return type

	GeoSeries

	
get_point_boundary_buffer_polygon(point_coords, radius, segment_direction, resolution=16)

	Returns a half-disk centered on the given point, with the given radius and having the boundary edge orthogonal to
the given segment direction. See boundary_edge_buffer.

	Return type

	Polygon

	
get_segment_boundary_buffer_polygon(segment_coords, radius, residual_radius)

	Return a segment boundary polygon using given radius. It represents all reachable points from the first
extremity of the segment. The returned polygon is a trapeze. See boundary_edge_buffer.

	Return type

	Polygon

	
isochrone_polygon(graph, source, limit, weight='length', tolerance=1e-07)

	Return a polygon approximating the isochrone set in the geograph.

	Parameters

	
	graph (Geograph) – Graph representing possible routes.

	source – Source node from where distance is computed

	limit (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – Isochrone limit (e.g. 100 meters, 5 minutes, depending on weight unit).

	weight (str [https://docs.python.org/3/library/stdtypes.html#str]) – Weight attribute on edges to compute distances (edge weights should be non-negative). (Default value = “length”)

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance to compute Voronoi cells. (Default value = 1e-7)

	Returns

	A polygon representing all reachable points within the given limit from the source node.

	Return type

	Polygon or MultiPolygon

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]

	
isochrone_polygon_with_alpha_shape(graph, source, limit, weight='length', alpha_quantile=99.0, remove_holes=True, tolerance=1e-07)

	Returns an approximation of the isochrone polygon using an alpha-shape of the Shortest Path Tree.

	Parameters

	
	graph (GeoGraph) – GeoGraph to browse

	source – Source node from where distance is computed

	limit (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – Isochrone limit (e.g. 100 meters, 5 minutes, depending on weight unit).

	weight (str [https://docs.python.org/3/library/stdtypes.html#str]) – Weight attribute on edges to compute distances (edge weights should be non-negative). (Default value = “length”)

	alpha_quantile (float [https://docs.python.org/3/library/functions.html#float]) – Quantile on circumradius to determine alpha (100 returns the convex hull,
0 returns an empty polygon). 0 <= quantile <= 100. (Default value = 99.0)

	remove_holes (bool [https://docs.python.org/3/library/functions.html#bool]) – If True remove holes in the returned polygon. (Default value = True)

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Buffering tolerance on polygon for rendering (Default value = 1e-7)

	Returns

	A polygon approximating the isochrone.

	Return type

	Polygon or MultiPolygon

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]

Geometry operations

	
class Extremity(shape_id, position, coords)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents an extremity of a line. It’s useful to parse and deal with lines given as input.

	
almost_equally_located(p1, p2, tolerance=1e-08)

	Test if two point are loacated at the same place within a tolerance.

	Parameters

	
	p1 (Point) – First point to compare

	p2 (Point) – Second point to compare

	tolerance – Comparison tolerance (Default value = 1e-8)

	Returns

	True if the two points have the same coordinates.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
convert_multilinestring_to_linestring(gdf)

	
	Convert all geometry attribute being a ‘MultiLineString’ to a ‘LineString’. The created line is a merge of all
	sublines.

	Parameters

	gdf (gpd.GeoDataFrame) – A GeoDataFrame with a ‘geometry’ column to modify

	Returns

	The number of converted ‘MultiLineString’

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If an input shape is not a LineString or a MultiLineString

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
coordinates_almost_equal(c1, c2, tolerance=1e-08)

	Returns true if the two given list of coordinates equals within a given tolerance.

	Parameters

	
	c1 (Iterable) – First point coordinates

	c2 (Iterable) – Second point coordinates

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance comparison (Default value = 1e-8)

	Returns

	True if the coordinates almost equal, false otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
discretize_line(line, discretization_tol)

	Takes a shapely LineString and discretize it into a list of shapely Points. Each point is at most at the
discretization tolerance distance of the following point.

	Parameters

	
	line (LineString) – Line to discretize

	discretization_tol (float [https://docs.python.org/3/library/functions.html#float]) – Maximum distance between two points on the line.

	Returns

	An ordered list of shapely Point

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

See also

discretize_lines

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
discretize_lines(lines, discretization_tol)

	Discretize some line into points.

	Parameters

	
	lines (Iterable[LineString] :) – Lines to discretize

	discretization_tol (float [https://docs.python.org/3/library/functions.html#float]) – Maximum distance between two points on the line.

	Returns

	Return all the discretized points as a shapely MultiPoint and a dictionary to map the discretized points for
each line.

	Return type

	MultiPoint and defaultdict

See also

discretize_line

	
get_closest_line_from_point(point_from, lines_to=None, discretization_tol=None, kd_tree=None, points_line_association=None)

	Find the closest line from a given point.

	Parameters

	
	point_from (PointCoordinatesLike) – Point coordinate to find the closest line.

	lines_to (list [https://docs.python.org/3/library/stdtypes.html#list]) – Group of lines among which the closest has to be found (optional if kdtree and
points_line_association are given). (Default value = None)

	discretization_tol (float [https://docs.python.org/3/library/functions.html#float]) – Maximum distance between discretized points (optional if kdtree and
points_line_association are given). (Default value = None)

	kd_tree (cKDTree) – An optional pre-computed kd_tree of discretized lines. (Default value = None)

	points_line_association (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – An optional pre-computed dictionary matching lines and discretized points. (Default value = None)

	Returns

	
	float – distance

	int – index of the closest line

	
get_closest_line_from_points(points_from, lines_to, discretization_tol)

	Find the closest line for each given points.

	Parameters

	
	points_from (list [https://docs.python.org/3/library/stdtypes.html#list]) – Points coordinates.

	lines_to (list [https://docs.python.org/3/library/stdtypes.html#list]) – Group of lines among which the closest has to be found.

	discretization_tol (float [https://docs.python.org/3/library/functions.html#float]) – Maximum distance between discretized points

	Returns

	A list of closest lines indexes.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_closest_point_from_line(line_from, discretization_tol, points_to=None, kd_tree=None)

	Return the closest point from a given line and its distance.

	Parameters

	
	line_from (LineString) – A shapely LineString (Default value = None)

	discretization_tol (float [https://docs.python.org/3/library/functions.html#float]) – Maximum distance between two discretized points on the line.

	points_to (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of points among which the closest to the line has to be found (optional is kdtree is
given)

	kd_tree (cKDTree) – A kd-tree representing the points among which the closest to the line has to be found (optional if
points_to is given) (Default value = None)

	Returns

	
	float – closest distance

	int – index of the closest point

	
get_closest_point_from_multi_shape(multi_shape, points_to=None, kd_tree=None)

	Computes the closest point to the multi shape (i.e. the point that has the smallest projection distance on the
entire multi shape object.

	Parameters

	
	multi_shape (MultiPoint or MultiLineString) – The multi shape object can be any shapely object among: MultiPoint, MultiLineString

	points_to (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of points among which to find the closest to the multi shape (Default value = None)

	kd_tree (cKDTree) – A kdtree representing the points among which the closest to the multishape has to be found (optional
if ‘points_to’ is given) (Default value = None)

	Returns

	
	float – distance

	int – index of the closest point

	
get_closest_point_from_points(points_from, points_to=None, kd_tree=None)

	Compute the closest point among the points_from list for each point in the points_to list.

	Parameters

	
	points_from (PointsCoordinatesLike) – Iterable of points coordinates

	points_to (list [https://docs.python.org/3/library/stdtypes.html#list] or None [https://docs.python.org/3/library/constants.html#None]) – Iterable of points coordinates (Default value = None)

	kd_tree (cKDTree) – a constructed kd tree representing points_from (Default value = None)

	Returns

	
	array of floats – distances

	ndarray of ints – indexes

	
get_closest_point_from_shape(shape, points_to=None, kd_tree=None)

	Compute the closest point to the given shape.

	Parameters

	
	shape (Point, MultiPoint, LineString or MultiLineString) – Any shapely shape

	points_to (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of points among which to find the closest to the multi shape (Default value = None)

	kd_tree (cKDTree) – A kdtree representing the points among which the closest to the shape has to be found (optional if
‘points_to’ is given) (Default value = None)

	Returns

	
	float – distance

	int – index of the closest point

	
get_closest_point_from_shapes(shapes_from, points_to)

	Compute the closest point for each given shape.

	Parameters

	
	shapes_from – An iterable of shapes (Point, MultiPoint, LineString, MultiLineString)

	points_to (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of points among which to find the closest to the multi shape

	Returns

	
	float – distance

	int – index of the closest point

	
get_default_discretization_tolerance(crs)

	Return a discretization tolerance with the right order of magnitude for
the given crs.

Examples

>>> import geonetworkx as gnx
>>> print(gnx.get_default_discretization_tolerance("epsg:3857"))
3.0

	
get_polygons_neighborhood(polygons)

	Returns for each polygon a set of intersecting polygons.

	
get_shape_extremities(shape, shape_id)

	Return the extremities of a shape in the network_shapes_gdf.

	
insert_point_in_line(line, point_coords, position)

	Insert a new point in a line given its coordinates.

	Return type

	LineString

	
merge_two_lines_with_closest_extremities(first_line, second_line)

	Merge two lines with their closest extremities. Euclidian distance is used here.

	Return type

	LineString

	
merge_two_shape(e1, e2, line1, line2)

	Merge two lines (line1 and line2) with the given extremities (e1 and e2).

	Return type

	LineString

	
split_line(line, distance)

	Cuts a line in two at a distance from its starting point.

Utils

Geograph utils

	
approx_map_unit_factor(point, tolerance=1e-07, method='geodesic')

	Compute a linear approximation of the map unit factor u for 1 meter:

 Read and write

Read and write

	
cast_for_fiona(gdf)

	Transform elements so that attributes can be writable by fiona.

	Parameters

	gdf (gpd.GeoDataFrame :) – GeoDataFrame to modify

	
get_graph_with_wkt_geometry(geograph)

	Modify the edges geometry attribute to a well-known text format to make the graph writable is some text formats.
The returned graph is not as operational as the given one (edge geometries has been removed).

	Parameters

	geograph (GeoGraph :) – Geograph to transform

	Returns

	A networkx graph with WKT geometries instead of shapely objects.

	Return type

	nx.Graph

See also

parse_nodes_attribute_as_wkt

	Return type

	Graph

	
graph_edges_to_gdf(graph)

	
	Create and fill a GeoDataFrame (geopandas) from edges of a networkX graph. The 'geometry' attribute is used
	for shapes.

	Parameters

	graph (nx.Graph) – Graph to parse

	Returns

	The resulting GeoDataFrame : one row is an edge

	Return type

	gpd.GeoDataFrame

	Return type

	GeoDataFrame

	
graph_nodes_to_gdf(graph)

	Create and fill a GeoDataFrame (geopandas) from nodes of a networkX graph. The 'geometry' attribute is used for
shapes.

	Parameters

	graph (GeoGraph) – Graph to parse

	Returns

	The resulting GeoDataFrame : one row is a node

	Return type

	gpd.GeoDataFrame

	Return type

	GeoDataFrame

	
parse_bool_columns_as_int(gdf)

	Transform bool columns into integer columns.

	Parameters

	gdf (gpd.GeoDataFrame :) – GeoDataFrame to modify

	
parse_edges_attribute_as_wkt(graph, attribute_name)

	Transform a graph edges attribute from WKT to shapely objects. Attribute is replaced.

	Parameters

	
	graph (nx.Graph :) – Graph to modify and parse

	attribute_name (str :) – Attribute to parse the edges geometries

See also

get_graph_with_wkt_geometry, parse_nodes_attribute_as_wkt

	
parse_graph_as_geograph(graph, **attr)

	Parse a networkx.Graph as a geonetworkx.GeoGraph with the closest geonetworkx graph type.

	Parameters

	
	graph (nx.Graph, nx.DiGraph, nx.MultiGraph or nx.MultiDiGraph) –

	**attr – Potential spatial keys.

	Returns

	Depending the orientation and multi edges properties.

	Return type

	GeoGraph, GeoDiGraph, GeoMultiGraph or GeoMultiDiGraph

	
parse_nodes_attribute_as_wkt(graph, attribute_name)

	Transform a graph nodes attribute from WKT to shapely objects. Attribute is replaced.

	Parameters

	
	graph (nx.Graph :) – Graph to modify and parse

	attribute_name (str :) – Attribute to parse the nodes geometries

See also

get_graph_with_wkt_geometry, parse_edges_attribute_as_wkt

	
parse_numpy_types(gdf)

	Transform numpy types as scalar types.

	Parameters

	gdf (gpd.GeoDataFrame :) – GeoDataFrame to modify

	
read_geofiles(nodes_file_path, edges_file_path, directed=True, multigraph=False, node_index_attr='id', edge_first_node_attr='u', edge_second_node_attr='v')

	Read geofiles to create a GeoGraph. Geofiles are read with geopandas.read_file method.

	Parameters

	
	nodes_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – File path of nodes.

	edges_file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – File path of edges.

	directed (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, returns a directed graph. (Default value = True)

	multigraph (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, returns a multigraph. (Default value = False)

	node_index_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Node id attribute in the geofile for nodes labeling. (Default value = settings.NODE_ID_COLUMN_NAME)

	edge_first_node_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Edge first node attribute in the geofile. (Default value = settings.EDGE_FIRST_NODE_COLUMN_NAME)

	edge_second_node_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Edge second node attribute in the geofile. (Default value = settings.EDGE_SECOND_NODE_COLUMN_NAME)

	Returns

	A parsed Geograph.

	Return type

	GeoGraph, GeoDiGraph, GeoMultiGraph, GeoMultiDiGraph

See also

GeoGraph.add_nodes_from_gdf, GeoGraph.add_edges_from_gdf, geopandas.read_file [https://geopandas.org/reference/geopandas.read_file.html#geopandas.read_file]

	
read_geograph_with_coordinates_attributes(graph, x_key='x', y_key='y', **attr)

	Parse a networkx graph which have node’s coordinates as attribute. This method can be useful to parse an output
graph of the osmnx package.

	Parameters

	
	graph (nx.Graph) – Given graph to parse. All nodes must have the x_key and y_key attributes.

	x_key – x-coordinates attribute to parse (Default value = ‘x’)

	y_key – y-coordinates attribute to parse (Default value = ‘y’)

	**attr – Optional geograph spatial keys.

	Returns

	The parsed geograph (shallow copy of the input graph).

	Return type

	GeoGraph, GeoDiGraph, GeoMultiGraph, GeoMultiDiGraph

	Return type

	GeoGraph

	
read_gpickle(path, **attr)

	Read geograph object in Python pickle format.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path where to read a graph object.

	**attr – Potential spatial keys.

	Returns

	The parsed geograph.

	Return type

	GeoGraph, GeoDiGraph, GeoMultiGraph or GeoMultiDiGraph

See also

write_gpickle, nx.read_gpickle, nx.write_gpickle

	
read_graphml(path, node_type=<class 'str'>, edge_key_type=<class 'int'>, **attr)

	Read graph in GraphML format from path.

	Parameters

	
	path – File path to the graphml file.

	node_type – See nx.read_graphml (Default value = str)

	edge_key_type – See nx.read_graphml (Default value = int)

	**attr – Potential spatial keys

	Returns

	Parsed Geograph

	Return type

	GeoGraph, GeoDiGraph, GeoMultiGraph, GeoMultiDiGraph

See also

write_graphml, nx.read_graphml, nx.write_graphml

	Return type

	GeoGraph

	
stringify_crs(graph)

	Write the CRS attribute as a string.

	
stringify_unwritable_columns(gdf)

	Transform elements which have type bool or list to string

	Parameters

	gdf (gpd.GeoDataFrame :) – GeoDataFrame to modify

	
write_edges_to_geofile(graph, file_name, driver='GPKG', fiona_cast=True)

	Writes the edges of a geograph as a geographic file.

	Parameters

	
	graph (GeoGraph, GeoDiGraph, GeoMultiGraph, GeoMultiDiGraph) – Graph to export

	file_name – File name (with path)

	driver – driver for export file format (GPKG, geojson, etc: can be found from fiona.supported_drivers)
(Default value = “GPKG”)

	fiona_cast – If true, methods for casting types to writable fiona types are used (Default value = True)

See also

write_geofile, write_nodes_to_geofile

	
write_geofile(graph, path='./', nodes=True, edges=True, driver='GPKG', fiona_cast=True)

	Export a networkx graph as a geographic files. Two files are generated: one for the nodes and one for the edges.
The files names will be prefixed by the graph name and suffixed by “_edges” or “_nodes”.

	Parameters

	
	graph – Graph to export

	path – export directory (Default value = ‘./’)

	nodes – boolean to indicate whether export nodes or not. (Default value = True)

	edges – boolean to indicate whether export edges or not. (Default value = True)

	driver –
	driver for export file format (GPKG, geojson, etc: can be found from fiona.supported_drivers)
	(Default value = “GPKG”)

	fiona_cast – If true, methods for casting types to writable fiona types are used (Default value = True)

See also

write_nodes_to_geofile, write_edges_to_geofile

	
write_gpickle(geograph, path, protocol=4)

	Write geograph object in Python pickle format.

	Parameters

	
	geograph (GeoGraph, GeoDiGraph, GeoMultiGraph, GeoMultiDiGraph) – Geograph to write

	path – Path where to right the pickle file.

	protocol – See pickle protocols (Default value = pickle.HIGHEST_PROTOCOL).

See also

read_gpickle, nx.read_gpickle, nx.write_gpickle

	
write_graphml(geograph, path, encoding='utf-8', prettyprint=True, infer_numeric_types=False)

	Generate GraphML file for the given geograph.

	Parameters

	
	geograph (GeoGraph, GeoDiGraph, GeoMultiGraph, GeoMultiDiGraph) – Geograph to write

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Writing file path

	encoding – See nx.write_graphml (Default value = ‘utf-8’)

	prettyprint – See nx.write_graphml (Default value = True)

	infer_numeric_types – See nx.write_graphml (Default value = False)

See also

read_graphml, nx.read_graphml, nx.write_graphml

	
write_nodes_to_geofile(graph, file_name, driver='GPKG', fiona_cast=True)

	Writes the nodes of a geograph as a geographic file.

	Parameters

	
	graph (GeoGraph, GeoDiGraph, GeoMultiGraph, GeoMultiDiGraph) – Graph to export

	file_name – File name (with path)

	driver – driver for export file format (GPKG, geojson, etc: can be found from fiona.supported_drivers)
(Default value = “GPKG”)

	fiona_cast – If true, methods for casting types to writable fiona types are used (Default value = True)

See also

write_geofile, write_edges_to_geofile

 Simplify

Simplify

	
_clean_merge_mapping(edge_mapping, new_edge, old_edges, directed)

	For the two-degree node merge operation, it cleans the new-old edges mapping dictionary by reporting original
edges to the newest edge. It makes sure that all edges in the mapping dictionary dict are in the resulting graph.

	
get_dead_ends(graph, node_filter=<function no_filter>, only_strict=False)

	Return the list of dead end in the given graph. A dead end is defined as a node having only one neighbor. For
directed graphs, a strict dead end is a node having a unique predecessor and no successors. A weak dead end is a
node having a unique predecessor that is also its unique successor.

	Parameters

	
	graph (nx.Graph) – Graph to parse.

	node_filter – Evaluates to true if a node can be considered as dead end, false otherwise. (Default value = no_filter)

	only_strict – If true, remove only strict dead ends. Used only for directed graphs. (Default value = False)

	Returns

	List of node name that are dead ends.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
remove_dead_ends(graph, node_filter=<function no_filter>, only_strict=False)

	Remove dead ends from a given graph. A dead end is defined as a node having only one neighbor. For
directed graphs, a strict dead end is a node having a unique predecessor and no successors. A weak dead end is a
node having a unique predecessor that is also its unique successor.

	Parameters

	
	graph (nx.Graph) – Graph to simplify

	node_filter – Evaluates to true if a node can be removed, false otherwise. (Default value = no_filter)

	only_strict – If true, remove only strict dead ends. Used only for directed graphs. (Default value = False)

	
remove_isolates(graph)

	Removes all isolates nodes in the given graph.

	Parameters

	graph (nx.Graph) – A graph on which to remove all isolates

	Returns

	Number of removed isolates

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
remove_nan_attributes(graph, remove_nan=True, remove_none=True, copy=False)

	Remove the nan and None values from nodes and edges attributes.

	Parameters

	
	graph (nx.Graph) – Graph (or subclass)

	remove_nan – If true, remove the nan values (test is val is np.nan) (Default value = True)

	remove_none – If true, remove the None values (test is val is None) (Default value = True)

	copy – If True, a copy of the graph is returned, otherwise the graph is modified inplace. (Default value = False)

	Returns

	The modified graph if copy is true.

	Return type

	None [https://docs.python.org/3/library/constants.html#None] or nx.Graph

	
remove_self_loop_edges(graph)

	Remove self loop edges on nodes of the given graph.

	Parameters

	graph (nx.Graph) – A graph on which to remove all self loops.

	Returns

	The number of removed self loops

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
remove_small_connected_components(graph, minimum_allowed_size)

	Remove all connected components having strictly less than minimum_allowed_size.

	Parameters

	
	graph (nx.Graph) – The graph on which to remove connected components

	minimum_allowed_size (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of nodes where a connected component is kept.

	Returns

	The number of removed connected components

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
trim_graph_with_polygon(graph, polygon, as_view=False, method='intersects')

	Trim a graph with a given polygon. Keep only the nodes that intersect (or are within) the polygon.

	Parameters

	
	graph (GeoGraph, GeoDiGraph, GeoMultiGraph or GeoMultiDiGraph) – A GeoGraph (or subclass)

	polygon (Polygon or MultiPolygon) – A shapely.Polygon describing the area to keep

	as_view (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a view of the given graph is returned

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – If set to "intersects", the shapely.intersects is used (keeps nodes and edges that
intersects the polygon). If set to "within", the shapely.within is used (keep nodes and edges that are
strictly into the polygon). (Default value = “intersects”)

	Returns

	The modified graph if as_view is True.

	Return type

	None [https://docs.python.org/3/library/constants.html#None] or GeoGraph

	
two_degree_node_merge(graph, node_filter=<function no_filter>)

	Merge edges that connects two nodes with a unique third node.

	Parameters

	
	graph (GeoGraph, GeoDiGraph, GeoMultiGraph or GeoMultiDiGraph) – Graph to modify

	node_filter – Evaluates to true if a given node can be merged. (Default value = no_filter)

	Returns

	Dictionary indicating for each new edge the merged ones.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

See also

two_degree_node_merge_for_directed_graphs, two_degree_node_merge_for_undirected_graphs

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
two_degree_node_merge_for_directed_graphs(graph, node_filter=<function no_filter>)

	Merge edges that connects two nodes with a unique third node. A potential node to merge n must have exactly two
different neighbors u and v with one of the following set of edges:

	(u, n) and (n, v)

	(u, n), (n, u), (n, v) and (v, n)

For the first case, a merging edge (u, v) is added. Under the latter, two edges (u, v) and (v, u) are added.
The added edges will have a geometry corresponding to concatenation of the two replaced edges. If a replaced edge
doesn’t have a geometry, the added edge will not have a geometry as well. Edges geometries must be well ordered
(first node must match with line’s first extremity), otherwise lines concatenation may not be consistent (see
order_well_lines).

	Parameters

	
	graph (GeoDiGraph or GeoMultiDiGraph) – Given graph to modify

	node_filter – Evaluates to true if a given node can be merged. (Default value = no_filter)

	Returns

	merged_edges – Dictionary indicating for each new edge the merged ones.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
two_degree_node_merge_for_undirected_graphs(graph, node_filter=<function no_filter>)

	Merge edges that connects two nodes with a unique third node for undirected graphs. Potential nodes to merge are
nodes with two edges connecting two different nodes. If a replaced edge doesn’t have a geometry, the added edge will
not have a geometry as well.

	Parameters

	
	graph (GeoGraph or GeoMultiGraph) – Graph to modify

	node_filter – Evaluates to true if a given node can be merged. (Default value = no_filter)

	Returns

	Dictionary indicating for each new edge the merged ones.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

 Python Module Index

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 geonetworkx	

 	
 	
 geonetworkx.generators	

 	
 	
 geonetworkx.geometry_operations	

 	
 	
 geonetworkx.readwrite	

 	
 	
 geonetworkx.simplify	

 	
 	
 geonetworkx.tools.isochrones	

 	
 	
 geonetworkx.tools.spatial_merge	

 	
 	
 geonetworkx.utils.geograph_utils	

 	
 	
 geonetworkx.utils.voronoi_utils	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	_clean_merge_mapping() (in module geonetworkx.simplify)

 	_get_ego_boundaries() (in module geonetworkx.generators)

 	
 	_get_nodes_geometries_from_edge_geometry() (GeoGraph method)

 	_get_nodes_geometries_to_set_for_edges_adding() (GeoGraph method)

A

 	
 	add_edge() (GeoGraph method)

 	(GeoMultiGraph method)

 	add_edges_from() (GeoGraph method)

 	add_edges_from_gdf() (GeoGraph method)

 	add_ego_boundary_nodes() (in module geonetworkx.generators)

 	
 	add_node() (GeoGraph method)

 	add_nodes_from() (GeoGraph method)

 	add_nodes_from_gdf() (GeoGraph method)

 	add_polygon_coordinates() (PyVoronoiHelper static method)

 	almost_equally_located() (in module geonetworkx.geometry_operations)

 	approx_map_unit_factor() (in module geonetworkx.utils.geograph_utils)

B

 	
 	boundary_edge_buffer() (in module geonetworkx.tools.isochrones)

C

 	
 	cast_for_fiona() (in module geonetworkx.readwrite)

 	check_nodes_validity() (GeoGraph method)

 	clip_infinite_edge() (PyVoronoiHelper method)

 	compose() (in module geonetworkx.utils.geograph_utils)

 	compute_voronoi_cells_from_lines() (in module geonetworkx.utils.voronoi_utils)

 	
 	convert_multilinestring_to_linestring() (in module geonetworkx.geometry_operations)

 	coordinates_almost_equal() (in module geonetworkx.geometry_operations)

 	copy() (GeoGraph method)

 	crs() (GeoGraph property)

 	crs_equals() (in module geonetworkx.utils.geograph_utils)

D

 	
 	discretize_line() (in module geonetworkx.geometry_operations)

 	
 	discretize_lines() (in module geonetworkx.geometry_operations)

E

 	
 	edges_geometry_key() (GeoGraph property)

 	edges_to_gdf() (GeoGraph method)

 	euclidian_distance() (in module geonetworkx.utils.geograph_utils)

 	
 	euclidian_distance_coordinates() (in module geonetworkx.utils.geograph_utils)

 	extended_ego_graph() (in module geonetworkx.generators)

 	Extremity (class in geonetworkx.geometry_operations)

F

 	
 	fill_edges_missing_geometry_attributes() (in module geonetworkx.utils.geograph_utils)

 	
 	fill_elevation_attribute() (in module geonetworkx.utils.geograph_utils)

 	fill_length_attribute() (in module geonetworkx.utils.geograph_utils)

G

 	
 	geodesic_distance() (in module geonetworkx.utils.geograph_utils)

 	GeoDiGraph (class in geonetworkx.geodigraph)

 	GeoGraph (class in geonetworkx.geograph)

 	geographical_distance() (in module geonetworkx.utils.geograph_utils)

 	GeoMultiDiGraph (class in geonetworkx.geomultidigraph)

 	GeoMultiGraph (class in geonetworkx.geomultigraph)

 	geonetworkx.generators (module)

 	geonetworkx.geometry_operations (module)

 	geonetworkx.readwrite (module)

 	geonetworkx.simplify (module)

 	geonetworkx.tools.isochrones (module)

 	geonetworkx.tools.spatial_merge (module)

 	geonetworkx.utils.geograph_utils (module)

 	geonetworkx.utils.voronoi_utils (module)

 	get_alpha_shape_polygon() (in module geonetworkx.tools.isochrones)

 	get_cells_as_gdf() (PyVoronoiHelper method)

 	get_cells_as_polygons() (PyVoronoiHelper method)

 	get_cells_coordiates() (PyVoronoiHelper method)

 	get_closest_line_from_point() (in module geonetworkx.geometry_operations)

 	get_closest_line_from_points() (in module geonetworkx.geometry_operations)

 	get_closest_nodes() (in module geonetworkx.utils.geograph_utils)

 	get_closest_point_from_line() (in module geonetworkx.geometry_operations)

 	get_closest_point_from_multi_shape() (in module geonetworkx.geometry_operations)

 	get_closest_point_from_points() (in module geonetworkx.geometry_operations)

 	get_closest_point_from_shape() (in module geonetworkx.geometry_operations)

 	get_closest_point_from_shapes() (in module geonetworkx.geometry_operations)

 	get_crs_as_str() (in module geonetworkx.utils.geograph_utils)

 	
 	get_dead_ends() (in module geonetworkx.simplify)

 	get_default_discretization_tolerance() (in module geonetworkx.geometry_operations)

 	get_default_distance_method_from_crs() (in module geonetworkx.utils.geograph_utils)

 	get_default_node_dict() (GeoGraph method)

 	get_distance() (in module geonetworkx.utils.geograph_utils)

 	get_edges_as_line_series() (GeoGraph method)

 	get_edges_voronoi_cells() (in module geonetworkx.tools.isochrones)

 	get_graph_bounding_box() (in module geonetworkx.utils.geograph_utils)

 	get_graph_with_wkt_geometry() (in module geonetworkx.readwrite)

 	get_line_ordered_edge() (in module geonetworkx.utils.geograph_utils)

 	get_line_start() (in module geonetworkx.utils.geograph_utils)

 	get_new_node_unique_name() (in module geonetworkx.utils.geograph_utils)

 	get_node_as_point() (GeoGraph method)

 	get_node_coordinates() (GeoGraph method)

 	get_nodes_as_multipoint() (GeoGraph method)

 	get_nodes_as_point_series() (GeoGraph method)

 	get_nodes_as_points() (GeoGraph method)

 	get_nodes_coordinates() (GeoGraph method)

 	get_point_boundary_buffer_polygon() (in module geonetworkx.tools.isochrones)

 	get_polygons_neighborhood() (in module geonetworkx.geometry_operations)

 	get_segment_boundary_buffer_polygon() (in module geonetworkx.tools.isochrones)

 	get_shape_extremities() (in module geonetworkx.geometry_operations)

 	get_spatial_keys() (GeoGraph method)

 	get_surrounding_nodes() (in module geonetworkx.utils.geograph_utils)

 	get_utm_crs() (in module geonetworkx.utils.geograph_utils)

 	graph_edges_to_gdf() (in module geonetworkx.readwrite)

 	graph_nodes_to_gdf() (in module geonetworkx.readwrite)

 	great_circle_distance() (in module geonetworkx.utils.geograph_utils)

H

 	
 	hard_write_spatial_keys() (in module geonetworkx.utils.geograph_utils)

I

 	
 	insert_point_in_line() (in module geonetworkx.geometry_operations)

 	is_null_crs() (in module geonetworkx.utils.geograph_utils)

 	
 	isochrone_polygon() (in module geonetworkx.tools.isochrones)

 	isochrone_polygon_with_alpha_shape() (in module geonetworkx.tools.isochrones)

J

 	
 	join_lines_extremity_to_nodes_coordinates() (in module geonetworkx.utils.geograph_utils)

M

 	
 	measure_line_distance() (in module geonetworkx.utils.geograph_utils)

 	
 	merge_two_lines_with_closest_extremities() (in module geonetworkx.geometry_operations)

 	merge_two_shape() (in module geonetworkx.geometry_operations)

N

 	
 	node_attr_dict_check() (GeoGraph method)

 	
 	nodes_geometry_key() (GeoGraph property)

 	nodes_to_gdf() (GeoGraph method)

O

 	
 	order_well_lines() (in module geonetworkx.utils.geograph_utils)

P

 	
 	parse_bool_columns_as_int() (in module geonetworkx.readwrite)

 	parse_edges_attribute_as_wkt() (in module geonetworkx.readwrite)

 	parse_graph_as_geograph() (in module geonetworkx.readwrite)

 	
 	parse_nodes_attribute_as_wkt() (in module geonetworkx.readwrite)

 	parse_numpy_types() (in module geonetworkx.readwrite)

 	PyVoronoiHelper (class in geonetworkx.utils.voronoi_utils)

R

 	
 	read_geofiles() (in module geonetworkx.readwrite)

 	read_geograph_with_coordinates_attributes() (in module geonetworkx.readwrite)

 	read_gpickle() (in module geonetworkx.readwrite)

 	read_graphml() (in module geonetworkx.readwrite)

 	remove_dead_ends() (in module geonetworkx.simplify)

 	remove_isolates() (in module geonetworkx.simplify)

 	
 	remove_nan_attributes() (in module geonetworkx.simplify)

 	remove_self_loop_edges() (in module geonetworkx.simplify)

 	remove_small_connected_components() (in module geonetworkx.simplify)

 	rename_edges_attribute() (in module geonetworkx.utils.geograph_utils)

 	rename_nodes_attribute() (in module geonetworkx.utils.geograph_utils)

 	repair_bowtie_polygon() (PyVoronoiHelper static method)

 	repair_polygon() (PyVoronoiHelper static method)

S

 	
 	set_nodes_coordinates() (GeoGraph method)

 	spatial_graph_merge() (in module geonetworkx.tools.spatial_merge)

 	spatial_points_merge() (in module geonetworkx.tools.spatial_merge)

 	split_as_simple_segments() (in module geonetworkx.utils.voronoi_utils)

 	
 	split_line() (in module geonetworkx.geometry_operations)

 	split_linestring_as_simple_linestrings() (in module geonetworkx.utils.voronoi_utils)

 	stringify_crs() (in module geonetworkx.readwrite)

 	stringify_nodes() (in module geonetworkx.utils.geograph_utils)

 	stringify_unwritable_columns() (in module geonetworkx.readwrite)

T

 	
 	to_crs() (GeoGraph method)

 	to_directed() (GeoDiGraph method)

 	(GeoGraph method)

 	(GeoMultiDiGraph method)

 	(GeoMultiGraph method)

 	to_directed_class() (GeoDiGraph method)

 	(GeoGraph method)

 	(GeoMultiDiGraph method)

 	(GeoMultiGraph method)

 	to_nx_class() (GeoDiGraph method)

 	(GeoGraph method)

 	(GeoMultiDiGraph method)

 	(GeoMultiGraph method)

 	
 	to_undirected() (GeoDiGraph method)

 	(GeoGraph method)

 	(GeoMultiDiGraph method)

 	(GeoMultiGraph method)

 	to_undirected_class() (GeoDiGraph method)

 	(GeoGraph method)

 	(GeoMultiDiGraph method)

 	(GeoMultiGraph method)

 	to_utm() (GeoGraph method)

 	trim_graph_with_polygon() (in module geonetworkx.simplify)

 	two_degree_node_merge() (in module geonetworkx.simplify)

 	two_degree_node_merge_for_directed_graphs() (in module geonetworkx.simplify)

 	two_degree_node_merge_for_undirected_graphs() (in module geonetworkx.simplify)

V

 	
 	vincenty_distance() (in module geonetworkx.utils.geograph_utils)

 	
 	vincenty_distance_coordinates() (in module geonetworkx.utils.geograph_utils)

W

 	
 	write_edges_to_geofile() (in module geonetworkx.readwrite)

 	write_geofile() (in module geonetworkx.readwrite)

 	
 	write_gpickle() (in module geonetworkx.readwrite)

 	write_graphml() (in module geonetworkx.readwrite)

 	write_nodes_to_geofile() (in module geonetworkx.readwrite)

_images/building_projection_graph2.png

_images/circumradius_distplot.png
99-percentile

Circumradius

0.08

M 3 o
S S S
3 3 3

salbueLn Aeunejaq Jo snipeJwnoID

0.00

_images/Isochrone_example_alpha_shape.png
A\

\

I/l‘lll

j —

Legend

B Source
[| Isochrone 2000 meters
"] Isochrone_4000_meters

| "] Isochrone_6000_meters

_images/SPT_extension.png
& b s L. d
. .
2 . . A
g (4 o ® K29
-~ . [PO
% . LR % L R
. PRI AT
$issociation rendiois® o
[t S >s
N

; . N

PR S

Hépital Couple-Enfant

L)

)
My de rencble \
.

Sy gt deméssche
l' . z - ¢ P g “
(4 -~ . -
’ o o

Hop

B Source
@ Boundary nodes

= ego_graph_edges

fle Verte

=== Unreachable edges

(AR
AN LT,

_images/voronoi_edges_cells.png

_images/class_diagram.png
gnx.GeoMultiGraph

nx.MultiGraph

gnx.GeoGraph

nx.Graph

nx.MultiDiGraph

nxDiGraph <}—|

gnx.GeoDiGraph

gnx.GeoMultiDiGraph

_images/graph_merge_example2.png
B Paris_subway_nodes
— Paris_subway_edges

® Paris_streets_nodes

—— Paris_streets_edges

@ Intersection nodes.
—— Intersection edges

_static/file.png

_images/DelaunayTriangulation.png
A0

o =
S A 9 AN
Vi §’K\\\ ‘4‘%/ // /“\\\\‘Wm‘@,:%

)JA" 3 "
\@lﬁj‘g(//\\\‘/// &
\ AN

_images/Isochrone_example.png
- Legend

B Source

[| Isochrone_200_meters
[Isochrone_400_meters
[| Isochrone_600_meters

_static/minus.png

nav.xhtml

 Table of Contents

 		
 GeoNetworkX 0.5

 		
 Getting started

 		
 Installation

 		
 What’s a GeoGraph ?

 		
 Closest edge rule

 		
 Implementation details

 		
 Reading and Writing Files

 		
 Reading Spatial Data

 		
 Writing Spatial Data

 		
 Supplement data

 		
 Computing distances

 		
 Getting elevation data

 		
 Spatial merge tools

 		
 Spatial points merge

 		
 Spatial graph merge

 		
 Isochrones

 		
 Shortest Path Tree

 		
 Edges Voronoi cells

 		
 \alpha-shape

 		
 Reference

 		
 Main classes

 		
 GeoGraph

 		
 GeoMultiGraph

 		
 GeoDiGraph

 		
 GeoMultiDiGraph

 		
 Tools

 		
